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We develop the semiclassical method of complex trajectories in application to chaotic dynamical tunneling.
First, we suggest a systematic numerical technique for obtaining complex tunneling trajectories by the gradual
deformation of the classical ones. This provides a natural classification of the tunneling solutions. Second, we
present a heuristic procedure for sorting out the least suppressed trajectory. As an illustration, we apply our
technique to the process of chaotic tunneling in a quantum mechanical model with two degrees of freedom.
Our analysis reveals rich dynamics of the system. At the classical level, there exists an infinite set of unstable
solutions forming a fractal structure. This structure is inherited by the complex tunneling paths and plays a
central role in the semiclassical study. The process we consider exhibits the phenomenon of optimal tunneling:
the suppression exponent of the tunneling probability has a local minimum at a certain energy which is thus
�locally� the optimal energy for tunneling. We test the proposed method by comparison of the semiclassical
results with the results of the exact quantum computations and find a good agreement.
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I. INTRODUCTION

An intrinsic feature of quantum physics is the existence of
processes that are forbidden at the classical level. The text-
book examples of such processes are tunneling and over-
barrier reflection in one-dimensional quantum mechanics;
more involved topics include atom ionization processes �1�,
chemical reactions �2�, false vacuum decay in scalar field
theory �3�, etc. Generically, one introduces a certain param-
eter g2 �the Planck constant � in quantum mechanics, cou-
pling constant in field theory, etc.� measuring the magnitude
of quantum fluctuations, and finds that the probabilities P of
classically forbidden processes behave exponentially as g2

→0,

P � g�Ae−F/g2
. �1�

Here F�0 is the suppression exponent and the dependence
of the preexponential factor on g is indicated explicitly. In
this paper we adopt the term “tunneling” for any process
forbidden at the classical level. This includes, in particular,
the cases of dynamical tunneling �2,4�, when the exponential
suppression of the process is not related to the existence of a
potential barrier.

A powerful tool for the study of tunneling at small g2 is
provided by semiclassical methods. Exploiting the semiclas-
sical approach, one reduces the problem of computing the
tunneling probability to the problem of finding the relevant
solution to the classical equations of motion in the complex
domain �1,2,5�, where both the time variable t and dynamical
coordinates are taken to be complex. The suppression expo-
nent F is then related to the classical action S calculated
along an appropriate contour in the complex-time plane. The

shape of this contour, as well as the boundary conditions
imposed on the solution at t→ ±�, are dictated by the quan-
tum numbers of the initial and final states. In the simplest
cases of under-barrier motion �one-dimensional tunneling,
false vacuum decay� the contour runs along the imaginary-
time axis,1 and the relevant solution is real along this axis.
Such a trajectory may be identified with the “most probable
escape path” in the configuration space �3,6�, which gives
some understanding of the classically forbidden dynamics. In
other cases, however, the passage of the system through the
classically forbidden region of the phase space cannot be
treated separately from the preceding and following real-time
evolution, and the analysis of complex tunneling solutions in
the complex-time domain is needed. This happens, e.g., in
the study of chemical reactions with definite initial quantum
states of the reactants �2� or in the investigation of the in-
duced tunneling processes in field theory �7–10�. The semi-
classical techniques based on genuinely complex classical
solutions received the common name of the method of com-
plex trajectories.

It should be pointed out that the application of the above
method might be highly nontrivial. Major complications are
related to the issues of existence and uniqueness of tunneling
trajectories, which are basically the complex solutions to a
certain boundary value problem. First, it may occur that the
boundary value problem at hand does not have any solutions
at all �see, e.g., Ref. �11��. Second, there may exist many
�sometimes an infinite number of� solutions. Some of them
may well be unphysical and should be rejected. The identi-
fication of physical solutions relies very much on the particu-
lar properties of the system under consideration; presently
there are no trustworthy criteria applicable in general �see
Refs. �12–16� for attempts to find such criteria�. Even after
the unphysical solutions are eliminated, the problem remains
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1In that case one usually introduces the real variable �= it, which
is called Euclidean time.
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to identify the solution�s� that yield the minimal suppression
exponent and therefore correspond to the dominant contribu-
tion to the tunneling amplitude.

The above difficulties become particularly pronounced in
the case of tunneling in chaotic systems. Appearance of
chaos is generic for nonlinear systems with many degrees of
freedom; the topics related to tunneling in the presence of
chaos were addressed in Refs. �13–15,17–22�. The semiclas-
sical analysis of chaotic tunneling is hindered by the exis-
tence of an infinite number of semiclassical solutions which
form a fractal set in the complex phase space �13,20,22�. The
direct analysis of this set with the purpose of identifying the
physically relevant solutions becomes an elaborative task in
the systems with many degrees of freedom �23�. Presently,
the semiclassical analysis of the chaotic tunneling processes
is limited to the special cases when the phase space of the
system can be explicitly visualized �13,20,22�, or when the
small subclass of periodic tunneling orbits is considered �15�.
Development of generic methods of classifying the semiclas-
sical solutions is of great importance �23�.

In this paper, we present a method of obtaining and clas-
sifying the tunneling trajectories, which is applicable, in par-
ticular, in the case of many-dimensional �D�2� chaotic tun-
neling. Namely, we consider processes that proceed
classically at some values of the initial-state quantum num-
bers, and become exponentially suppressed at other values.
The technique presented below enables one to obtain com-
plex trajectories describing tunneling by starting from the
real classical solutions and changing gradually the quantum
numbers of the initial state. Our procedure has two advan-
tages. First, it is generic and numerically implementable.
Second, it provides a natural classification of tunneling tra-
jectories based on the analysis of their classical progenitors.
The latter classification suggests a heuristic method for sort-
ing out the least suppressed tunneling path.

As an illustration we apply the above method to the prob-
lem of scattering in a quantum mechanical model with two
degrees of freedom. The process we study is a particular
example of over-barrier reflection. We calculate the suppres-
sion exponent for the reflection probability. As the test of the
method we compare the semiclassical results with the “ex-
act” suppression exponent. The latter is extracted from the
exact wave function obtained by solving the Schrödinger
equation numerically. The results of the two calculations are
in good agreement.

The system under consideration has two distinctive fea-
tures, which are inherent in two wide �intersecting but not
necessarily identical� classes of tunneling problems. We be-
lieve that our model is a generic representative of both of
these classes.

The first feature is chaoticity. In our model, chaos mani-
fests itself at the classical level as follows. Consider the set
of initial data giving rise to the classical reflected trajectories.
We will see that this set falls into an infinite number of
disconnected domains. The boundaries of these domains cor-
respond to trajectories which do not escape into the final
asymptotic region as time goes on, but get trapped in the
interaction region. The latter trajectories are unstable: small
deviations from them lead to either reflected or transmitted
solutions. Increasing the resolution of initial data reveals that

the set of initial data corresponding to the trapped trajectories
forms a fractal similar to the Cantor set. This is the hallmark
of the so-called irregular �or chaotic� scattering �24�.

The chaoticity of the classical dynamics has profound
consequences for the tunneling process. We will show that
complex trajectories relevant for over-barrier reflection are
all trapped in the interaction region and thus are unstable.
Moreover, they inherit the fractal structure of the classical
trapped solutions which means, in particular, that their num-
ber is infinite. The complex trajectory which contributes
most to the tunneling amplitude is a descendant of a certain
unstable classical solution lying on the boundary of the
above fractal set.

The chaoticity of the process manifests itself in the exact
quantum computations as well. We find that the quantum
probability of tunneling, instead of being smooth function of
energy, exhibits large irregular oscillations. Similar depen-
dence of the tunneling amplitude on the parameters of cha-
otic systems was reported previously in Refs. �17,18,20�. At
first glance, this behavior contradicts the semiclassical for-
mula �1�. One observes, however, that the oscillation period
scales as g2 when g2→0, so that the oscillations become
indiscernible in the semiclassical limit. In order to extract the
semiclassical suppression exponent, one smears the tunnel-
ing probability over several periods. The smeared probability
does obey the scaling law �1�.

The second feature of our system is as follows. We ob-
serve that the process under consideration is classically for-
bidden, and hence exponentially suppressed, at arbitrary high
energies. Our interest in this property is motivated by the
studies of similar processes in quantum field theory. As a
matter of fact, the exponential suppression at all energies is
generic for the field theoretical processes involving creation
of some classical object �soliton, bubble of new phase, or
vacuum configuration with different topology� in a collision
of two highly energetic quantum particles �10,25–28�. More-
over, it has been shown recently �10� that the method of
complex trajectories predicts the suppression exponent F of
the above processes to attain its minimum at a certain “opti-
mal” energy Eo, above which F stays constant �this behavior
of the suppression exponent was conjectured earlier in Refs.
�26,27��. The optimal value F�Eo� is determined by the
complex-valued classical solutions with particular properties
�see Refs. �10��; these solutions are called “real-time instan-
tons.”

One might question the applicability of the method of
complex trajectories for the description of the above phe-
nomenon of optimal tunneling. Indeed, the properties of pro-
cesses at E�Eo are in many respects different from those of
the well-known case of tunneling through a potential barrier.
In this paper we provide evidence that the semiclassical
method is applicable for the description of dynamical tunnel-
ing independently of how high the energy of the process is,
or whether there exists a potential barrier at all.

The model of this paper provides a particular example of
a quantum mechanical system exhibiting the phenomenon of
optimal tunneling. That is, the suppression exponent F�E�
depends on energy E in a nonmonotonic way, attaining a
local minimum at some energy Eo. We will find that the
minimal value of the suppression exponent is indeed given
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by the method of real-time instantons. At higher energies the
function F�E� grows to infinity.2

The paper is organized as follows. In Sec. II we describe
the model under consideration and introduce notations. In
Sec. III the classical dynamics of the system is analyzed. The
semiclassical study of the classically forbidden reflections is
performed in Sec. IV. In Sec. V we present the results of the
numerical integration of the Schrödinger equation and dis-
cuss their comparison with the semiclassical results. Section
VI contains a summary and conclusions.

II. SETUP

Throughout the paper we illustrate our technique on a toy
model describing the evolution of a quantum particle in a
two-dimensional harmonic waveguide. That is, we consider
the case when the motion of the particle is confined to the
vicinity of a certain line Y = �1/g�a�gX� by a quadratic po-
tential �X and Y stand for the Cartesian coordinates of the
particle�. The equipotential contour U�X ,Y�=E is shown in
Fig. 1; the Hamiltonian is

H =
PX

2 + PY
2

2m
+ U�X,Y� , �2�

where

U�X,Y� =
m�2

2
�Y −

1

g
a�gX��2

,

a�x� = a0e−x2/2. �3�

In the asymptotic regions X→ ±�, the variables of the model
�2� separate, and the motion of the particle becomes trivial:
oscillations in the Y direction are accompanied by translatory
motion along the X axis. The wiggle around the point X�0
introduces nonlinear coupling between the degrees of free-
dom; we refer to this part of the configuration space as the
interaction region.

In what follows we use the system of units where

� = � = m = 1. �4�

The rescaling

X = x/g, P = pg �5�

brings the Hamiltonian �2� into the form

H =
g2�px

2 + py
2�

2
+

1

2g2 �y − a�x��2. �6�

Equation �6� implies that the semiclassical regime in our
model occurs for g2�1. Apart from g2, the only free param-
eter of the model �6� is a0, which we set as

a0 = 0.8. �7�

This choice will be explained in Sec. III. To avoid confusion,
we remark that the rescaled coordinates x and y will be used
for the semiclassical analysis of Secs. III and IV and Appen-
dix A, while the original ones �X and Y� are exploited in the
quantum computations of Sec. V and Appendix B.

The process we want to investigate is the backward re-
flection of a particle coming from the right �see Fig. 1�. Note
that, though we will refer to this process as over-barrier re-
flection, there is actually no potential barrier in our system:
the minimum of the potential is zero in any transverse sec-
tion of the waveguide. The incoming quantum state 	E ,N
 is
completely determined by the total energy E and occupation
number N of the Y oscillator. The quantity of interest is the
total reflection coefficient for this state,

P�E,N� = lim
tf−ti→+�

1

tf − ti
� �

f

�f 	e−iH�tf−ti�	E,N
�2, �8�

where 	f
 stands for the basis of reflected waves �Pf �0�
supported in the right asymptotic region, and the proper nor-
malization of the incoming state has been chosen as

	E,N	E�,N�
 = 2	
�E − E��
NN�. �9�

At some values of the initial-state parameters E, N the re-
flection process is classically forbidden. �In particular, one
expects a particle with high enough translatory momentum
	Pi	 to pass classically to the other side of the waveguide
ending up in the asymptotic region X→−�.� In this case the
reflection coefficient �8� is expected to obey the semiclassical
scaling law �1� at g2→0. Below we concentrate on the cal-
culation of the leading suppression exponent F as a function
of E and N.

We do not pretend to describe any concrete experimental
situation by the Hamiltonian �2�; it is chosen as a convenient
testing ground of our semiclassical technique. The advantage
of the scattering setup is an unambiguous determination of
the initial and final states of the tunneling process, the latter
determination being problematic in the case of bounded mo-
tion �5�. Moreover, the simple form of our model makes it
tractable both semiclassically and by exact quantum me-
chanical methods. Note that a system similar to �2� was con-
sidered in Ref. �29�.

2This is different from the case of collision-induced tunneling in
field theory, where the suppression exponent stays constant at ener-
gies higher than Eo. The reason is that in the latter case at E�Eo

another tunneling mechanism, which is specific for the field theo-
retical setup, comes into play. Namely, above the optimal point the
energy excess �E−Eo� is released by the emission of a few hard
quantum particles, so that the tunneling transition effectively occurs
at the optimal energy �10,27�.

Y

reflected

transmitted incoming

X

FIG. 1. Equipotential contour U�X ,Y�=E for the waveguide
model �2� and the directions of the incoming, reflected, and trans-
mitted fluxes of particles.
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III. CLASSICAL REFLECTIONS

Let us start by considering the classical dynamics of the
reflection process. As we will see in Sec. IV, the analysis of
the classical dynamics is crucial for understanding the clas-
sically forbidden reflections. The results of the present sec-
tion will enable us to identify the sets of initial data �E ,N�
that correspond to the classically allowed and forbidden re-
flections; for brevity we refer to these sets as classically al-
lowed and classically forbidden regions. Note that these are
the regions in the initial data plane �E ,N�; they should not
be confused with the classically allowed and forbidden re-
gions in the configuration space. The latter term is not used
in this paper.

One notes that the action functional of the model �6� has
the form

S = S/g2, �10�

where

S =� � ẋ2 + ẏ2

2
−

1

2
�y − a�x��2�dt �11�

does not contain the parameter g at all. Hence, g drops out of
the classical equations of motion. While studying the classi-
cal dynamics it is convenient to forget about g and consider
the classical system defined by the rescaled action �11�.

In contrast to quantum mechanics, where two quantum
numbers E and N determine the initial state completely, the
classical evolution is specified by four initial conditions. One
of these is physically irrelevant. It corresponds to the x co-
ordinate at the initial moment t= ti, and can be absorbed by
the appropriate shift of ti. Note that, still, one should be
careful to choose x�ti� far from the interaction region; in
numerical calculations of this section the value

x�ti� = 10 �12a�

is used. To keep contact with the quantum mechanical for-
mulation we choose the other two initial data to be the total
classical energy E and the “classical occupation number” N,
which is equal3 to the initial classical energy of the trans-
verse oscillations. This determines the initial velocity of the
particle along the waveguide,

ẋ�ti� = − �2�E − N� . �12b�

It is worth noting that Eq. �10� implies the following relation
between the classical parameters and their quantum counter-
parts:

E = g2E, N = g2N . �13�

The last initial condition is the initial phase �0 of y oscillator.
It parametrizes the initial position and velocity of the particle
in the transverse section of the waveguide:

y�ti� = �2N cos �0, �14a�

ẏ�ti� = − �2N sin �0. �14b�

Clearly, a given point of the plane �E ,N� belongs to the
classically allowed region if classical reflection is possible
for some value�s� of �0. Otherwise, we say that this point
lies in the classically forbidden region.

At first glance it may seem that classical reflections are
impossible for any values of E ,N as there is no potential
barrier to prevent the classical particle from going into the
left asymptotic region. Let us make sure that this is not the
case by considering the evolution at small E. In this regime,
the particle moves slowly along the axis y=a�x� of the wave-
guide performing small and �relatively� rapid oscillations in
the orthogonal direction. The frequency �� of the latter os-
cillations is determined by the curvature of the transverse
section of the potential and thus depends on the position x of
the particle. It is straightforward to find that ���x�
=�1+ �a��x��2. The energy of the orthogonal oscillations E�

divided by their frequency is an adiabatic invariant,

E�

���x�
= const = N . �15�

On the other hand, the conservation of total energy yields,

E =
v�

2

2
+ E� =

v�
2

2
+ N�1 + �a��x��2, �16�

where v� is the projection of the particle velocity onto the
axis of the waveguide. Thus, the adiabatic motion in our
waveguide is governed by one-dimensional dynamics in the
effective potential

U�x� = N�1 + a0
2x2e−x2

. �17�

where the explicit expression �3� for the function a�x� has
been used. This picture is valid as long as �̇� /��

2 �1, which
is satisfied for E, N�1.

The potential �17� has the form of two symmetric humps
with the maxima Umax=N�1+a0

2e−1 situated at x= ±1 �see
Fig. 2�. Any particle coming from the right with E�Umax
gets reflected back; so these values of E ,N belong to the
classically allowed region. In the opposite case E�Umax, the
particle overcomes the effective potential, which means that
the reflection process is classically forbidden. Thus, the line
E=N�1+a0

2e−1 is the boundary of the classically allowed
region at E ,N�1.3Recall that in our units �=1.

−1 1 x

Umax

U

a

b

FIG. 2. Effective potential for the motion in the adiabatic re-
gime. The particle is reflected at E�Umax �case a�, and is transmit-
ted through the waveguide at E�Umax �case b�.

LEVKOV, PANIN, AND SIBIRYAKOV PHYSICAL REVIEW E 76, 046209 �2007�

046209-4



When the values of the parameters E ,N approach the
boundary of the classically allowed region, the particle
spends more and more time around the tops of the effective
barrier U�x�. For the values precisely at this boundary there
are two unstable solutions x= ±1. In the two-dimensional
picture these solutions correspond to periodic oscillations
around the fixed points �x= ±1,y=a0e−1/2� on the axis of the
waveguide. We will see that such unstable periodic solutions
exist beyond the adiabatic approximation and play a key role
in the semiclassical analysis �cf. Refs. �22,30,31��. Borrow-
ing the terminology from gauge theories �32� we call them
excited sphalerons.4 The sphaleron at x�1 �x�−1� will be
referred to as a near �far� sphaleron according to its position
relative to the right end of the waveguide.

To identify the boundary of the classically allowed region
beyond the adiabatic regime one resorts to numerical meth-
ods. We scan through the range of initial phases 0�0
2	 at fixed E ,N and look for the reflected trajectories. If
such a trajectory is found at some �0, the point �E ,N� is
identified as belonging to the classically allowed region. Oth-
erwise the point is attributed to the classically forbidden do-
main. The results of these calculations are presented in Fig.
3. The boundaries Nb�E� of the classically allowed region are
obtained for three different values of the parameter a0. The
classical reflections are allowed for the initial data above the
boundaries, N�Nb�E�, and forbidden below them, N
�Nb�E�. One observes that beyond the adiabatic regime the
form of the boundary Nb�E� depends qualitatively on the
value of a0. At small a0 it monotonically increases. At a0
�0.5 a dip in the curve Nb�E� develops around E�0.6. As
a0 grows further, this dip becomes lower and more pro-
nounced, until it touches the line N=0 at a0�1. At even
larger values of a0 the boundary of the classically allowed
region splits into two disconnected parts and a range of en-

ergies around E=0.6 appears, where the classical reflections
are allowed even for N=0.

Heuristically, one may envision that the form of the curve
Nb�E� reflects the behavior of the suppression exponent
F�E ,N� in the classically forbidden region. Indeed, the sup-
pression exponent is zero above the line N=Nb�E�. As the
value of N decreases at fixed energy E, the function F�E ,N�
starts growing at N=Nb�E�. Thus, the deeper the point is in
the classically forbidden domain, the larger is F, and vice
versa. According to this reasoning the dip in the curve Nb�E�
at a0�0.5 implies that classically forbidden reflections are
least suppressed at energies E�0.6. Moreover, at a0�1
there is a finite range of occupation numbers, 0�N�Nb�E
=0.6�, where the reflection process is suppressed at all ener-
gies �except for the narrow band N�E�N�1+a0

2e−1 corre-
sponding to the adiabatic regime�. For these values of N, the
suppression exponent F considered as function of E is
expected5 to have a �local� minimum in the vicinity of E
=0.6. One of the purposes of this paper is to test the method
of complex trajectories in the regime when the minimum of
F�E� exists; so we concentrate on the case a0=0.8.

Now, we are in a position to investigate the classical dy-
namics of the system �11� in detail. The observations we
make below are crucial for the subsequent study of the clas-
sically forbidden reflections. One asks the following ques-
tion. At given E ,N belonging to the classically allowed re-
gion, there is a nonempty set RE,N of initial phases �0, which
give rise to classical reflections. What is the structure of this
set? To answer this question, we fix the initial conditions �12�
and �14� at ti=0 and integrate the equations of motion until
tf =200 starting from different values of the initial phase �0.
In this way, the dependence of xf �x�tf� on �0 is obtained
�see Fig. 4�. The negative values of xf correspond to the
classical transmissions through the waveguide, while xf �0
represent reflections. Thus,

RE,N = �	�0	xf��0� � 0� . �18�

Figure 4 shows that the set RE,N is not connected: the inter-
vals of phases corresponding to the reflected trajectories are
intermixed with those representing transmissions. Moreover,
the scaling of the fine structures of the function xf��0� re-
veals self-similar behavior. One concludes that the set RE,N
consists of an infinite number of disconnected domains form-
ing a fractal structure. Such a complexity is a manifestation
of irregular dynamics inherent in our model; this feature is in
sharp contrast to the situation one observes in completely
regular systems �see, e.g., the model of Ref. �33� where the
analogous set consists of a single interval �30��.

To analyze the nature of irregular dynamics, we consider
the trajectories generated by the initial phases which span
various connected intervals R�;E,N�RE,N. All the classical
trajectories from a given interval of phases display the same
qualitative properties; some features change discontinuously,

4The word sphaleron is formed from the Greek adjective
������os meaning “ready to fall.”

5We stress that the heuristic arguments about the behavior of the
suppression exponent will be confirmed by the explicit semiclassi-
cal and quantum mechanical calculations in the subsequent
sections.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1 1.2

N

E

a0=0.5

a0=0.8

a0=1.0

K
in

em
at

ic
al

ly
fo

rb
id

de
n

FIG. 3. �Color online� The boundaries Nb�E� of the classically
allowed regions plotted for a0=0.5, 0.8, 1.0. The classical reflec-
tions are forbidden at N�Nb�E�. The points to the left of the dashed
line E=N correspond to the kinematically forbidden initial
conditions.
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however, as one goes to another interval. Let us characterize
each trajectory by its behavior in the interaction region. To
start with, one can distinguish a subset of intervals
R j;E,N�RE,N corresponding to the trajectories which reach
the far sphaleron, perform several oscillations there, and go
out of the interaction region back to x→ +�. We call this
subset “the main sequence.” The x�t� dependence for the first
four trajectories from the main sequence is plotted in Fig.
5�a�, while the corresponding values of the initial phase are
marked in Fig. 4 by numbers �1–4�. Let us make this impor-
tant observation: all the plotted solutions leave the far
sphaleron with approximately the same oscillatory phase. In
fact, we have found that this is true for any reflected trajec-
tory. Here lies the root of the disconnectedness of RE,N: one
cannot transform one reflected trajectory into another with a
different number of oscillations at the far sphaleron by con-
tinuously changing the initial phase. For a solution from the
main sequence the index j is equal to the number of oscilla-
tions at x�−1.

The trajectories corresponding to the intervals of RE,N
other than those from the main sequence display more in-
volved behavior. After oscillating at the far sphaleron they
move to the near sphaleron, oscillate for an integer number
of periods on top of it, return to the far sphaleron, oscillate
there once again, etc. As an example we present several tra-
jectories from the next-to-the-main sequence �with only one

return to the far sphaleron� in Fig. 5�b�; they correspond to
the initial phases marked by 1a to 3a in Fig. 4. We observed
that the motion back and forth between the sphalerons can be
arbitrarily complicated, giving rise to the aforementioned
fractal structure of RE,N.

For the semiclassical analysis of the next section it is
important to know what happens with the classical reflected
solution when the initial phase �0 approaches the end point
�end of an interval R�;E,N�RE,N. Figure 4 implies that at the
ends of the interval the corresponding trajectory gets stuck in
the interaction region. More precisely, one observes that, as
the value of �0 approaches �end, the classical solution spends
more and more time at x�1 before going away to infinity
�see Fig. 6�, so that the initial datum �0=�end gives rise to a
trajectory that is neither reflected, nor transmitted, but ends
up at the near sphaleron. Such a trajectory is unstable: there
exist arbitrarily small perturbations which push it out of the
interaction region to either end of the waveguide. As the
number of intervals �and hence of their end points� constitut-
ing RE,N is infinite, the number of the above unstable trajec-
tories is infinite, too. We will see in the next section that the
above unstable solutions give rise to the tunneling trajecto-
ries; thus, the classically forbidden reflection process of the
next section provides a particular example of chaotic
tunneling.

More insight into the classical dynamics is gained by ex-
tending the previous analysis to include the variation of two
initial conditions �0 and N at fixed energy E. One is again
interested in the structure of the set RE of initial data ��0 ,N�
that correspond to classical reflections. This set is shown in
Fig. 7 �E=0.6�. As before, it consists of an infinite number of
disconnected domains R�;E. Each of these domains is char-
acterized by the way how the corresponding trajectories
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32a
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FIG. 4. Dependence of the final particle position on the value of
the initial phase �0 for E=0.6, N=0.1 �xf is not to scale�. From top
to bottom: scaling of the fine structures of the function xf��0� re-
veals self-similar behavior. The corresponding regions in different
graphs are marked by the boxes of the same type �dashed or solid�.
The trajectories corresponding to the marked points are shown in
Fig. 5.
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FIG. 5. �Color online� Main �a� and secondary �b� sequences of
trajectories for E=0.6, N=0.1. The trajectories correspond to initial
phases with the same marks as in Fig. 4.
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travel back and forth between the sphalerons. The domains
of the main sequence with j=1,2 ,3 are clearly visible in Fig.
7 along with the secondary ones that accompany them. Fig-
ure 7 enables one to understand what happens with the clas-
sical reflected trajectories when the occupation number N
approaches the boundary of the classically allowed region
from above, N→Nb�E�; this corresponds to moving to the
lower boundary of the set RE,

Nb�E� = inf
��0,N��RE

N .

One notices that, no matter how close N is to this boundary,
the line N=const always has intersections with some do-
mains from the main sequence. In other words, the boundary
of the classically allowed region is the accumulation point of
the main sequence of domains. On the other hand, as N tends
to Nb�E�, the intersection of the line N=const with certain
domains of RE disappears. This means disappearance of cer-
tain types of trajectories at N→Nb�E�. Concentrating on the
main sequence, one observes that the remaining trajectories
are those with large indices j. As the latter are equal to the
number of oscillations at the far sphaleron, one concludes

that the closer the point �E ,N� is to the boundary of the
classically allowed region, the longer the corresponding tra-
jectories get stuck at the far sphaleron.6

We conclude this section with remarks on the implications
of the above classical picture for the semiclassical descrip-
tion of tunneling. It will be shown in Sec. IV that each iso-
lated domain of the set RE continues into a branch of tun-
neling trajectories. Thus, the number of tunneling solutions
at given E ,N�Nb�E� is infinite; each of these solutions is
associated with a certain domain R�;E. In particular, the frac-
tal structure of RE is inherited by the collection of tunneling
paths. The above property is very different from that of mod-
els with completely regular classical dynamics �30� where
the tunneling solution is unique. On the other hand, an infi-
nite number of tunneling trajectories seems to be generically
inherent in chaotic systems �20�. According to the general
rules, the suppression exponent F in Eq. �1� is equal to the
lower bound of the suppressions calculated on all the tunnel-
ing solutions,

F�E,N� = inf
�

F��E,N� , �19�

where the index � marks the solutions. At first glance it is
not clear how the lower bound �19� can be found: one is
unable to compute the suppression exponents of an infinite
set of trajectories. Two observations that greatly simplify the
problem are as follows. First, it will be shown below that the
nearer the domain R�;E is to the boundary of the classically
allowed region, the smaller is the suppression exponent of
the tunneling solution associated with it. Second, the do-
mains of the main sequence accumulate near the boundary of
the classically allowed region. This implies that the suppres-
sion exponents Fj of the tunneling trajectories from the main
sequence7 decrease with the index j. Moreover, for any tun-
neling path there exist tunneling solutions from the main
sequence with the same E ,N and smaller values of the sup-
pression exponent. Thus, in order to calculate the lower
bound �19� it is sufficient to consider the trajectories from
the main sequence, compute their suppression exponents Fj,
and take the limit

F�E,N� = lim
j→�

Fj�E,N� . �20�

This tactic is implemented in the next section.

IV. SEMICLASSICAL STUDY

We now formulate the boundary value problem for the
tunneling trajectories. The probability �8� of over-barrier re-
flection is described by the complexified solution to the clas-
sical equations of motion

6This property should not be confused with the property described
in the previous paragraph, where it was pointed out that the trajec-
tories get stuck at the near sphaleron when the initial data approach
the boundary of a single domain R�;E of RE.

7These are the ones originating from the main sequence R j;E of
domains.

-2

0

2

4

6

8

10

20 40 60

t

x
y

FIG. 6. �Color online� Classical trajectory with the value of the
initial phase �0=−0.414 close to the end point �0−�end�10−3 of
the first interval of the main sequence; E=0.6, N=0.1. Before leav-
ing the interaction region the trajectory gets stuck at the near
sphaleron for a long time.

FIG. 7. �Color online� The set RE of initial data leading to
reflections at E=0.6 is shown in gray �green online�. The inset
shows the fine structure near the boundary of RE. The three first
domains of the main sequence are marked by numbers.
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S


x�t�
=


S


y�t�
= 0 �21a�

obeying the following boundary conditions:

ẋ2

2
+ N = E,

ẏ2

2
+

y2

2
= N at t → − � , �21b�

Im x, Im y → 0 at t → + � . �21c�

Here E ,N stand for the �rescaled, see Eqs. �13�� energy and
initial occupation number.8 The initial conditions �21b� at t
→−� can be cast into the form �12b� and �14�, where the
initial phase �0 is now allowed to take complex values.
Similarly, x�ti� is also complex, in general. The boundary
conditions �21b� and �21c� have clear physical interpretation.
Equations �21b� fix the quantum numbers E, N of the initial
quantum state. Due to the uncertainty principle this makes
the two conjugate coordinates �0 and x�ti� maximally inde-
terminate. Accordingly, in the semiclassical picture they be-
come complex valued. On the other hand, the quantum num-
bers of the final states are not fixed, and Eqs. �21c� imply
that the particle comes out in a classical state with real co-
ordinates and momenta.

Note that, generically, the tunneling solution is defined
along a certain contour in the complex-time plane. In our
case, however, the contour is trivial: it runs along the real
time axis.

It is useful to parametrize the imaginary parts of x�ti� and
�0 as follows:

2 Im x�ti� = − ẋ�ti�T , �22�

2 Im �0 = − T − � , �23�

where T and � are real parameters. Then the suppression
exponent of a given complex trajectory is

F� = 2 Im S̃� − ET� − N��, �24�

where the two last terms result from the nontrivial initial
state of the process, while

S̃� =
1

2
� dt�− xẍ − yÿ − �y − a�x��2� �25�

is the classical action integrated by parts. The subscript � is
introduced to remind us that there may exist several tunnel-
ing solutions with given E ,N.

We do not present the derivation of the above boundary
value problem. The logic is completely analogous to that of
Refs. �30,33–35�, and an interested reader is referred to these
papers. The field theory analog of the problem �21� was first
introduced in Ref. �7�.

It is important to remark that the problem �21� does not
guarantee per se that its solutions describe reflections. To

ensure that this is the case, one supplements Eqs. �21� with
the condition

Re x → + � at t → + � . �26�

Below we find solutions that satisfy this requirement by us-
ing the �-regularization method of Refs. �30�.

Let us explain the physical meaning of the initial-state
parameters T, �. One can prove the relations �see, e.g., Refs.
�30,35��

T = −
�

�E
F�E,N�, � = −

�

�N
F�E,N� , �27�

which imply that T and � are the derivatives of the suppres-
sion exponent with respect to energy and initial oscillator
excitation number. One notices that T ,� can be used instead
of E ,N to parametrize the tunneling paths. Then, the solu-
tions with T=0 correspond to the extrema of the suppression
exponent with respect to energy. These solutions are called
real-time instantons; they can be found directly using the
method of Ref. �10�. Calculating the value of the functional
�24� on them, one obtains the extremal �notably, minimal�
values of the suppression exponent at N=const. The method
of real-time instantons is important in field theory �10�,
where it enables one to calculate the minimal suppression of
the collision-induced tunneling. One of the purposes of this
paper is to check the above method by the explicit compari-
son with the exact quantum mechanical results. Accordingly,
we pay specific attention to the region around the minimum
of the suppression exponent F�E�.

We solve the boundary value problem �21� numerically
with the deformation procedure. That is, the solution with
energy E+�E and oscillator excitation number N+�N is
found by the iterative Newton-Raphson method �36� starting
from the solution at E ,N, which serves as the zeroth-order
approximation. In this way, an entire branch of tunneling
trajectories can be obtained starting from a single solution
and walking in small steps in E ,N. The details of our nu-
merical technique can be found in Refs. �33�; see Refs. �8,9�
for the applications in field theory.

The only nontrivial task of the above approach is to find
the input for the first deformation. The idea we put forward
in this paper is to start the procedure from the classically
allowed region and arrive at the tunneling solutions by
changing the values of E ,N in small steps. �Note that the
approach of obtaining complex trajectories from the real
ones was also implemented in a different context in Ref.
�37�.� One begins with the observation that the real classical
trajectories satisfy9 Eqs. �21�. Naively, one takes a trajectory
with E ,N from the classically allowed region, and decreases
the value of N with the hope of getting the correct tunneling
solution at N�Nb�E�. However, serious obstacles arise on
the way. First, the classical solution is not unique at given
E ,N; the degeneracy is parametrized by the initial phase
�0�RE,N. This makes the numerical implementation of the
deformation procedure problematic. Second, suppose one
takes the initial data �N ,�0� belonging to some connected

8Note that the boundary value problem �21� is invariant with re-
spect to time translations: if x�t�, y�t� is a solution to Eqs. �21�, then
x�t+��, y�t+�� is also a solution for any ��R. We fix this ambigu-
ity by requiring Re x�ti�=10 �cf. Eq. �12a��. 9Their suppression is obviously zero.
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domain R�;E�RE and decreases N. It was observed in Sec.
III that, as the value of N approaches the boundary N
=Nb,��E�of R�;E from above, the reflected classical solution
spends more and more time in the interaction region. At N
=Nb,��E� it gets stuck at x�1 forever, merging at this point
with the classical solutions, which represent the transmis-
sions of the particle through the waveguide at N�Nb,��E�.
Here lies the worst obstruction: the transmitted classical tra-
jectories obviously solve the boundary value problem �21�,
so that the deformation procedure which starts from the clas-
sically allowed region will produce them at N�Nb,�, instead
of the correct complex reflected solutions. One concludes
that the condition �26� should be somehow incorporated ex-
plicitly into the boundary value problem.

A method that automatically fixes the asymptotic �26� of
the solution is proposed in Refs. �30,34�. It is called � regu-
larization. Here we briefly describe this method concentrat-
ing on its application to the problem at hand. A more detailed
description of the technique can be found in Refs. �30,34�.
One replaces the action of the system in Eqs. �21� and �24�
with the modified action

S��x� = S�x� + i�Tint�x� . �28�

Here � is small and positive, while the functional Tint mea-
sures the time the particle spends in the interaction region.
The simplest choice is

Tint =� dt f„x�t�,y�t�… , �29�

where the function f is real and positive at x ,y�R and is
localized in the interaction region. Otherwise the choice of f
is arbitrary: the final result is recovered in the limit �→ +0
and does not depend on the particular form of this function.
We use

f = �̃�1 − x��̃�x − 1� , �30�

where

�̃�x� =
1

1 + e−2x−x3 �31�

is the smeared � function. Note that f peaks at the near
sphaleron; this choice will be explained shortly.

One notices two important changes that the substitution
�28� brings into the boundary value problem �21�. First, the
degeneracy of the classical solutions is removed at ��0.
Indeed, any unperturbed classical trajectory extremizes the
original action functional S�x�, so that at fixed E ,N and �
=0 there exists a valley of extrema parametrized by �0. The
functional Tint�x�, however, discriminates among all these
extrema and lifts the valley. Correspondingly, at small ��0
the extrema of the regularized action S��x� are close to the
classical reflected solutions with �Tint /��0=0 �see Refs. �30�
for the detailed discussion�. From the physical viewpoint this
can be understood as follows. In the �-regularized case the
suppression, Eq. �24�, of the trajectories in the classically
allowed region is not precisely zero because of the complex
term i�Tint in Eq. �28�. The suppression is minimized on the

real classical trajectories corresponding to the minima of Tint;
therefore, the solutions to Eqs. �21� and �28�, which by con-
struction correspond to the least suppressed reflections, are
close to the above classical trajectories.

In practice, one starts with the function Tint��0� represent-
ing the values of Tint on the classical trajectories with fixed
E ,N and �=0, finds the extrema of this function, and uses the
corresponding trajectories as the zeroth-order approximation
to the solutions of Eqs. �21� and �28� with small but nonzero
�.

The second useful property of the � regularization comes
about as one tries to decrease the value of the initial oscilla-
tor excitation number, and cross the boundary N=Nb,��E� of
a given classically allowed domain. One discovers that at �
�0 each reflected trajectory at N�Nb,��E� is smoothly con-
nected with the complex reflected solution at N�Nb,��E�.
The reason, again, lies in the additional suppression caused
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FIG. 8. �Color online��a� Reflected classical trajectory from the
first domain of the main sequence, corresponding to the minimum
of Tint��0� �E=0.6, N=0.1, �0=−0.366�. �b� Regularized tunneling
solution �E=0.6, N=0, �=10−6� descended from the above classical
trajectory. �c� Limit �→0 of the tunneling solution.
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by the term i�Tint in the action. Although the reflected trajec-
tories get only slightly perturbed at small �, the solutions
ending up in the interaction region at t→ +� change drasti-
cally. Indeed, the functional Tint�x� diverges on the latter
trajectories giving rise to infinite suppression. The immediate
consequence is that the paths which get stuck in the interac-
tion region are excluded from the set of solutions to the
boundary value problem �21� and �28�. Now, the solutions to
Eqs. �21� and �28� cannot change their asymptotic �26�: start-
ing from the classical reflected solution and decreasing the
value of the initial excitation number N in small steps, one
leaves the classically allowed region and obtains the correct
complex reflected trajectories.

Let us briefly comment on the choice of the contour in the
complex-time plane which carries the tunneling solutions.
Obviously, the classical trajectories, which are the starting
point of our deformation procedure, run along the real-time
axis. Generically, while moving into the classically forbidden
region, one may need to deform the time contour in order to
avoid the singularities of the solution �see Refs. �30��. In the
actual calculations of this paper we did not encounter such a
necessity. The time contour was always kept coincident with
the real axis.

An example of a regularized tunneling solution deep in-
side the classically forbidden region �E=0.6, N=0� is shown
in Fig. 8�b�.

The depicted solution descends from the classical re-
flected trajectory with E=0.6, N=0.1, �0=−0.366 �see Fig.
8�a��, which �locally� minimizes the function Tint��0�; the
regularization �=10−6 was switched on and N was gradually
decreased by small steps. Note that the solution in Fig. 8�b�
is genuinely complex and satisfies the requirement �26�.

The solutions to the original boundary value problem are
recovered in the limit �→ +0; the suppression exponents of
the unperturbed trajectories are

F��E,N� = lim
�→+0

F�,��E,N� . �32�

Practically, the removal of the regularization is carried out by
taking � to be small enough, ��10−6. At these �, the values
of the suppression exponents F�,� stabilize at the level of
accuracy O�10−5� which is sufficient for our purposes.

As one tries to take the limit �→ +0 of the tunneling
trajectory itself, a surprise comes about. That is, as � de-
creases, the regularized tunneling trajectories deep inside the
classically forbidden region stay longer and longer at finite x,
so that the trajectories with �=0 do not escape to infinity, but
end up on an unstable solution - the near sphaleron - living at
x�1. �An example of an unperturbed tunneling trajectory
�E=0.6, N=0, �=0� is shown in Fig. 8�c�.� Strictly speaking,
the solutions at �=0 do not describe reflection, but rather
creation of the unstable state, the sphaleron. Nevertheless,
their suppression exponents are relevant for tunneling as the
latter state decays10 into the asymptotic region x→ +� with-
out exponential suppression. The mechanism of dynamical

tunneling via creation of unstable periodic orbits was discov-
ered independently in Refs. �30� and Refs. �31�.

We remark that all unregularized tunneling trajectories in
the model under consideration tend to the unstable sphaleron
solution at t→ +�, and thus turn out to be unstable them-
selves. Straightforward numerical methods are inappropriate
for finding such trajectories �33�, while � regularization pro-
vides a universal method for treating such instabilities.11

Let us now discuss the structure of tunneling solutions.
Following the above strategy, one starts with the classical
reflected solutions. It is straightforward to see that the func-
tion Tint��0� has at least one extremum in every connected
interval R�;E,N in the set of reflection phases RE,N. Indeed,
the classical reflected trajectories with �0�R�;E,N spend fi-
nite time in the interaction region and smoothly depend on
the initial data, producing the smooth function Tint��0�. On
the other hand, the classical trajectories spend more and
more time at the near sphaleron as �0 approaches the end
points of R�;E,N �see Sec. III�. Thus, Tint��0� tends to infinity
at the end points of this interval, necessarily attaining a mini-
mum somewhere in between.12 � Note that the specific form
of the functional Tint �function f in Eq. �29� peaks at x�1�
has been chosen in accordance with the tendency of classical
trajectories to get stuck at the near sphaleron.� Thus, starting
from each interval R�;E,N, one obtains one branch of solu-
tions to the �-regularized problem. Note that, as RE,N is the
section of the set RE by the line N=const, the domains of RE
may correspond to two disconnected intervals of RE,N �see
Fig. 7�. When N decreases, these intervals merge. Below we
assume that the starting classical solution of type � has been
taken at small enough N that the domain R�;E gives rise to a
single interval of phases13 R�;E,N. Then, the fractal structure
of RE is inherited by the complex tunneling paths: the dis-
tinct branches of complex trajectories are in one-to-one cor-
respondence with the connected domains of the set RE.

Now, we can give a heuristic justification of the claim
made at the end of Sec. III: the nearer the domain R�;E�RE
lies to the boundary of the classically forbidden region, the
less suppressed is the corresponding tunneling trajectory. Let
us consider two branches of solutions stemming from the
domains 1 and 2 in Fig. 7. The line N=0.07 intersects with
the domain 2, so that the point E=0.6, N=0.07 belongs to the
classically allowed region, and the suppression of the solu-
tion 2 vanishes in the limit �→0. On the other hand, the line
N=0.07 does not cross the domain 1. Thus, at E=0.6, N
=0.07 the corresponding solution to Eqs. �21� and �28� is

10Classically, the particle stays at the sphaleron for an infinite
period of time. However, quantum fluctuations lead to the decay of
this state with the characteristic time of order ln g.

11An alternative would be to change the boundary conditions
�21c�; see Appendix A.

12In general, there might be several extrema of Tint inside each
connected interval R�;E,N, and one should consider solutions corre-
sponding to each of these extrema. In our case the minimum is
unique.

13One legitimately asks what happens if the starting classical so-
lution is taken at large enough N, where two different intervals of
phases correspond to one and the same domain of RE. Clearly, in
this case the above deformation procedure will produce two differ-
ent solutions to Eqs. �21� and �28�. We have observed, however, that
as the value of N decreases below the point where the two intervals
merge, the corresponding solutions become identical.
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genuinely complex and has nonzero suppression even at �
→0. Suppose that one decreases N and enters the classically
forbidden region. At some point the solution of the type 2
also becomes classically forbidden. It is clear that at least for
some range of N, its suppression remains weaker than that of
the solution 1. This suggests, though does not guarantee, the
same hierarchy of suppressions inside the entire classically
forbidden region. Below, we check the conjectured hierarchy
explicitly.

Let us discuss in detail the case N=0 �no transverse os-
cillations in the initial state� corresponding to the extreme
values of parameters inside the forbidden region; all the
qualitative features are the same for other values of N as
well. Our strategy is to find the limit �20� of the main se-
quence of suppressions Fj, and check that this limit repre-
sents the lower bound of the suppression exponents of all the
tunneling solutions.

Figure 9 shows several first representatives of the main
sequence of tunneling paths at E=0.5, N=0, �=10−6. Similar
to their classical progenitors, the branches of tunneling tra-
jectories may be classified according to the number of oscil-
lations they perform at the far sphaleron. On the contrary, the
number of oscillations at the near sphaleron is not an invari-
ant of the branch: as discussed above, it grows as the regu-
larization parameter � decreases, so that the tunneling trajec-
tories get stuck at the near sphaleron at �=0. Another
important observation about the plots in Fig. 9 is that the
imaginary parts of the solutions are sizable only in the be-
ginning of the evolution. They fall off rapidly during the

oscillations at the far sphaleron and become small at late
times. This qualitative feature holds for the trajectories at
other energies as well.14 Thus, the suppression exponents of
the trajectories are saturated during the first few oscillations
at the far sphaleron, and depend weakly on the subsequent
evolution. In addition, the trajectories from the main se-
quence almost coincide in the beginning of the process. This
implies fast convergence of the suppression exponents Fj to
the limiting value F according to the formula �20�.

The above convergence is demonstrated in Table I, where
the suppression exponents Fj�E� are presented for several
values of energy E at N=0. As expected from the heuristic
argument, the value of Fj decreases as j gets larger. The
limiting values F�E� are also included in Table I. They can
be obtained by extrapolating the dependences of the suppres-
sion exponents Fj on j, which are well fitted by the formula

Fj = F + ae−bj ,

where a and b are real positive coefficients. A better way,
which is exploited in this paper, is to find the limit j→ +� of
the tunneling solution itself, and then calculate the limiting
value of the suppression exponent using Eq. �24�. The limit-
ing solution performs an infinite number of oscillations on

14On the contrary, the smallness of Im x at t→−� observed in Fig.
9 is peculiar to the trajectories at E=0.5. It implies that the corre-
sponding values of T are small �see Eq. �22��, so the plotted trajec-
tories are close to the real-time instantons.
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FIG. 9. �Color online� Four tunneling solutions from the main sequence; E=0.5, N=0, �=10−6.
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the far sphaleron; it can be obtained numerically by the
method described in Appendix A. The limiting solution at
E=0.5, N=0 is shown in Fig. 10.

So far we have considered only the tunneling trajectories
from the main sequence and demonstrated that Eq. �20� re-
produces the lower bound of their suppressions.

We have checked that the limiting value F�E� is lower
than the suppression exponents of other tunneling trajectories
as well. As an illustration, consider the tunneling trajectories
shown in Fig. 11. The differences between their suppression
exponents and that of the limiting solution are plotted in Fig.
12. The limiting solution is evidently the least suppressed
one.

Let us discuss the physical interpretation of the obtained
results. The form of the limiting solution implies that the
reflection process in our model proceeds in two stages. First,
the far sphaleron state gets created. This stage is exponen-
tially suppressed due to the essential modification of the par-
ticle state needed for the sphaleron creation. Second, the
sphaleron state decays into the asymptotic region x→ +�
with a probability of order 1. This two-stage process is a
manifestation of the phenomenon of “tunneling on top of the
barrier” �30,31�; the phenomenon is generic for the inclusive
tunneling processes �see Refs. �9,10� for field theoretical ex-
amples�.

Remarkably, though we came to the limiting solution by
considering the accumulation point of an infinite number of
complicated tunneling paths, the solution itself is unique and
very simple. All the chaotic features of motion, like going
back and forth between the sphalerons, are related to the
second stage of the reflection process: the decay of the far
sphaleron. As the second stage is unsuppressed, one might
conclude that, after all, the chaotic motions are irrelevant for
the calculation of the main suppression exponent. Note, how-
ever, that one is not able to guess from the beginning which
tunneling solution corresponds to the smallest suppression;
therefore, systematic analysis of the chaotic motions is es-
sential. In addition, the subdominant contributions of the
chaotic trajectories might be important for the analysis of the
process at finite values of the semiclassical parameter g
�13,14,22�.

The final semiclassical results for the dependence of the
suppression exponent F on energy E for N=0; 0.02; 0.04 are
presented in Fig. 13. Note that the suppression exponent is a
nonmonotonic function of energy with the minimum near
E=0.5.15 We recall that the minima of F�E� correspond to
particularly interesting solutions, real-time instantons.

V. EXACT QUANTUM COMPUTATIONS

In this section we extract the suppression exponent F
from the exact reflection probability �8�. One begins by solv-
ing numerically the Schrödinger equation

H	�
 = E	�
 . �33�

It is convenient to work in the original variables X, Y, PX,
and PY �see Eq. �5��, in order to bring the kinetic term of the
Hamiltonian into the canonical form. One rewrites Eqs. �2�
and �3� as

H =
PX

2 + PY
2

2
+

1

2
�Y − ã�X��2, �34�

where

ã�X� =
1

g
a�gX� . �35�

Basically, our numerical technique follows the lines of Refs.
�33,38�. One works in the asymptotic basis formed by a di-
rect product of the translatory coordinate eigenfunctions 	X

and eigenfunctions 	n
 of the y oscillator with the fixed fre-
quency �=1,

�n�X� = 	X,n	�
 .

The stationary Schrödinger equation �33� reads

d2

dX2�n�X� = �
n�

Ann��X��n��X� , �36�

where

15In the range E�0.1, which is not shown in Fig. 13, the suppres-
sion attains the local maximum and goes down to zero as E de-
creases toward the boundary of the classically allowed region.

TABLE I. The suppression exponents of the complex trajecto-
ries from the main sequence at N=0. The rows represent the indices
j of the trajectories, while the columns correspond to the values of
energy E. The last row refers to the limiting solution.

E

j 0.1 0.3 0.5 0.7 0.9

1 0.3188 0.1625 0.1098 0.1398 0.2259

2 0.2586 0.1380 0.0991 0.1341 0.2221

3 0.2373 0.1340 0.0979 0.1336 0.2219

4 0.2307 0.1333 0.0978 0.1336 0.2219

5 0.2285 0.1331 0.0978 0.1336 0.2219

� 0.2272 0.1331 0.0978 0.1336 0.2219
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FIG. 10. �Color online� Limit of the main sequence of tunneling
trajectories: the solution which gets stuck at the far sphaleron; E
=0.5, N=0.
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Ann��X� = n	P̂Y
2 + �Ŷ − ã�X��2 − 2E	n�


= 
n,n��2n + 1 + ã2�X� − 2E� − ã�X��
n,n�−1
�2n + 2

+ 
n,n�+1
�2n�

is an infinite three-diagonal matrix.
In the asymptotic regions X→ ±�, ã�X�→0 the interac-

tion terms become negligibly small, and the solution takes
the form

�n�X� → rn
±eiPnX + tn

±e−iPnX, �37�

where

Pn = �2E − �2n + 1� �38�

stands for the asymptotic translatory momentum of the nth
mode. The boundary conditions for the stationary wave func-
tion �n�X� are constructed in the standard way. The particle
comes from the right, X→ +�, in the Nth oscillator state;
hence, we fix

tn
+ = 
n,N. �39�

On the other hand, only the outgoing wave should remain at
X→−�,

rn
− = 0. �40�

Note that, while the low-lying modes are oscillatory at the
asymptotic, the ones with n�E−1/2 grow �decay� exponen-
tially �see Eq. �38��. Physically, the latter correspond to the
kinetically inaccessible region, where the energy of the trans-
verse oscillations exceeds E. We fix the boundary conditions
for them by killing the parts growing exponentially toward
infinities. One notes that, after the proper continuation of Eq.
�38�,

Pn = i��2n + 1� − 2E, n � E − 1/2, �41�

the aforementioned conditions coincide with Eqs. �39� and
�40�.

Equations �36�, �39�, and �40� constitute the boundary
value problem to be solved numerically. After the stationary
wave function �n�X� is found, one calculates the probability
current
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FIG. 11. �Color online� Examples of secondary tunneling trajectories; E=0.5, N=0, �=10−6.
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FIG. 12. �Color online� Difference between the suppression ex-
ponents of the secondary trajectories of the types shown in Fig. 11
and that of the limiting solution; N=0.
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J = Im �
n

�n
*�X�

d

dX
�n�X� , �42�

and hence the reflection probability

P =
	J�out�	
	J�in�	

= �
n�E−1/2

Pn

PN
	rn

+	2, �43�

where the currents J�in� and J�out� are computed with the in-
coming and outgoing parts of the wave function at X→ +�,
respectively.

The details of the numerical formulation of the problem
�36�, �39�, and �40� are presented in Appendix B. Let us
discuss the results. The typical dependence of the reflection
probability P on energy E=g2E is shown in Fig. 14, solid
line �the values of the other parameters are N�g2N=0, g
=0.2�. The striking feature is that the graph is modulated by
sharp oscillations. At first glance, this picture is incompatible
with the results of the semiclassical analysis, where we ob-
tained, at least in the leading order, that the tunneling prob-
ability P�e−F�E�/g2

is a smooth function of energy. We are
going to demonstrate the opposite: the quantum mechanical
results reconcile nicely with the semiclassical ones.

By computing the reflection probability at different g, one
notices the following important properties. First, the period
of oscillations scales as �E�g2. So in the semiclassical limit
g→0 the oscillations become more and more frequent. Sec-
ond, one considers Fg�g2lnP and asks whether the ampli-
tude of oscillations of this quantity goes to zero in the limit
g→0. We certainly observed that it drops down as g de-
creases, though we were unable to figure out16 whether it
indeed vanishes at g→0. The properties mentioned above
suggest the interpretation of the oscillations as the result of

the quantum interference between the contributions of vari-
ous tunneling trajectories found in Sec. IV. Suppose for sim-
plicity that there are only two such trajectories. Let us denote
their complex actions by S1�E� and S2�E� �we omit the de-
pendence on N�. Then, the total reflection amplitude reads

r � A1eiS1�E�/g2
+ A2eiS2�E�/g2

.

For the sake of argument we suppress the index n and disre-
gard the initial-state contributions into the exponents. In the
above formula A1 and A2 stand for the preexponential factors
of the partial processes. For the reflection probability one
writes

P � 	r	2 � 	A1	2e−2 Im S1�E�/g2
+ 	A2	2e−2Im S2 �E�/g2

+ 2	A1A2	e−Im �S1�E�+S2�E��/g2

�cos�Re�S1�E� − S2�E��/g2 + arg�A1/A2�� .

�44�

Along with the terms corresponding to the probabilities of
the partial processes, one gets the interference term, which
results in oscillations with period �E of order g2. Of course, if
one of the solutions, say, the first one, is dominant, Im S1
� Im S2, the relative contributions of the two last terms in
Eq. �44� vanish exponentially fast at g→0. In our case the
situation is more subtle, however. As the semiclassical analy-
sis reveals, in the model under consideration there exists an
infinite number of tunneling paths, which pile up near the
dominant limiting solution. So at each finite value of g there
are solutions that satisfy Im �S2−S1��g2 �the index “1” still
marks the dominant solution here�. Thus, the sum �44� al-
ways contains an infinite number of oscillating terms produc-
ing a complicated interference pattern; it is not clear whether
the oscillations disappear at small g.

What saves the day is the aforementioned scaling of the
oscillation period. Indeed, �E vanishes at g→0 implying that
the oscillations become indiscernible in the semiclassical
limit. One obtains a quantity which is well behaved in this

16This is due to the limitations of the numerical approach: one
cannot obtain solutions to the Schrödinger equation at arbitrarily
small g, see Appendix B.
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limit by averaging the reflection probability over several pe-
riods of oscillations. To be more precise, we consider the
smoothed probability

P�s��E,N� =� dE�D��E − E��P�E�,N� , �45�

where D� is the bell-shaped function,

D��E� =
e−E2/�2

��	
, � dE D��E� = 1.

If �=g2�, where � is a fixed number, the smoothing �45�
does not spoil the value of the dominant suppression expo-
nent. Indeed, for the first term in Eq. �44� one writes

P�s,dom� �� dE�	A1	2e−F1�E��/g2D��E� − E�

�	A1	2eF1�
2�E��2/4e−F1�E�/g2

, �46�

where17 F1=2 ImS1, F1�=dF1 /dE, and we made use of the
Taylor series expansion in the second equality. It is clear that
only the preexponential factor is affected by the integration
�45�, while the exponent F1�E� is left intact. On the other
hand, at large enough values of the coefficient � the formula
�45� represents averaging over many oscillatory periods,
which kills all the oscillating contributions. Indeed, consider
the typical interference term

P�osc� � C�E�e−F0�E�/g2
� cos��S�E�/g2 − ���E�� , �47�

where F0=Im�S1+S2�, �S=Re�S1−S2�, C=2 	A1A2	, and
��=arg�A1 /A2�. Performing integration, one obtains

P�s,osc��E� � Ce−F0/g2
cos��S/g2 + �� − F0��S��2/2�

� exp��2

4
�F0�

2 − �S�2�� .

Taking into account that F0��F1� we see that the interference
term is suppressed by the additional factor exp�−�2�S�2 /4�
with respect to the dominant contribution �46�. Below, we fix
�=1. We observed that the interference patterns get multi-
plied by 10−3 in this case; the latter number is accepted as the
precision of the smoothening. The graph of the function
P�s��E� is shown in Fig. 14, dashed line.

Our final remark concerns the physical meaning of the
smoothing procedure. In a realistic experiment one cannot fix
the energy E of the incoming particles exactly; rather, one
works with some sharply peaked energy distribution D of a
width �E��. Formula �45� represents averaging over such
distribution.

Now, we are ready to consider the limit g2→0. Our aim is
to check the following asymptotic formula �cf. Eq. �1��:

P�s��E,N� → g�A�E,N�e−F�E,N�/g2
as g2 → 0. �48�

We compute the value of the quantity −g2 ln P�s� at several
g2�1, keeping E and N fixed, and fit the graph with the
expression

− g2 ln P�s� = F − �g2 ln g − g2 ln A . �49�

It is important to point out that we do not consider � as a free
parameter of the fit. Rather, we use the following result of
Ref. �34�: for sphaleron-mediated processes, such as ours,
�=1 at N=0 �vacuum initial state�, and �=2 at N�0. Some
of the numerical results �points� together with their fits by
the formula �49� �lines� are shown in Fig. 15. The graphs are
drawn for three different values of N and E=0.5. Apparently,
our data are well approximated by the asymptotic �49�. To
get the value of the suppression exponent F, one extrapolates
the curves in Fig. 15 to the point g2=0, where the quantum
mechanical results should coincide with the semiclassical
ones. The error of the extrapolation arises mainly from the
disregarded terms proportional to the higher powers of g2.
One reduces such errors by computing the reflection prob-
ability at the smallest possible g2. In practice we used two
values of the semiclassical parameter in each fit, namely, g
=0.1, 0.07 at N=0, and g=0.1, 0.08 at N=0.02, 0.04. The
extrapolation error is determined by pouring some additional
points into the fit; it varies from 
F�10−2 at small E to

F�10−4 at E�1. It matches the estimate O�g4��10−4 of
higher-order terms of the semiclassical expansion which are
neglected in Eq. �49�.

Our final results for the suppression exponent F�E ,N� ex-
tracted from the numerical solution of the Schrödinger equa-
tion are presented in Fig. 13 �points with error bars standing
for the accuracy of the extrapolation�. The quantum me-
chanical results are in very good agreement with the semi-
classical ones �lines�. This justifies the semiclassical ap-
proach presented in this paper.

VI. SUMMARY AND DISCUSSION

In this paper, we tested the semiclassical method of com-
plex trajectories in the regime of chaotic dynamical tunnel-

17For the sake of argument we again disregard the boundary terms
in the suppression exponent �cf. Eqs. �24��.
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ing. We studied a particular example, over-barrier reflection
in the two-dimensional waveguide model �2�. The initial
state of the process was fixed by the total energy E and
occupation number N of the transverse oscillatory motion.
We calculated the suppression exponent of the process both
semiclassically and by solving exactly the full Schrödinger
equation. The two approaches show very good agreement.

The tunneling trajectories in our semiclassical approach
are obtained as solutions to the boundary value problem �21�.
We advocated a particular method for finding these solutions.
It consists of two important ingredients: �i� determination of
the solution at some values of the initial-state parameters
E ,N; �ii� gradual deformation of the solution to other E ,N.

The deformation procedure �ii� was developed in Refs.
�8,33�. The advantages of this procedure are the simplicity of
numerical implementation and generality. It can be applied
efficiently to systems with many degrees of freedom, includ-
ing nontrivial models of field theory �see Ref. �9��.

On the other hand, a generic approach for performing the
step �i� was missing so far. In this paper we proposed the
systematic procedure which fills this gap. The procedure en-
ables one to obtain the complex tunneling trajectories start-
ing from the real classical solutions. It is based on the �
regularization method of Refs. �30�. Our procedure appears
to be generic. It can be applied to any process that proceeds
classically at some values of the initial-state parameters �at
large N in our case� and becomes exponentially suppressed at
other values.

The process we studied is a particular example of chaotic
tunneling. The chaoticity manifests itself in the infinite num-
ber of tunneling solutions. Our procedure, which connects
the tunneling solutions to the classical ones, turns out to be
highly efficient in this situation. That is, it enables one to
classify the tunneling trajectories on the basis of the analysis
of the classical dynamics. This was demonstrated explicitly
in the present paper.

In addition, we proposed a heuristic criterion for sorting
out the least suppressed tunneling trajectories basing on the
classification of their classical progenitors. Hopefully, this
criterion will be useful for the processes in other dynamical
systems as well.

Another interesting feature of our setup is the phenom-
enon of optimal tunneling; namely, the suppression exponent
F considered as a function of energy E at fixed N is non-
monotonic. It attains the local minimum at E�0.5 which is
thus �locally� the optimal energy for tunneling. It is worth
stressing that this behavior of the suppression exponent is
unrelated to the quantum interference, which was neglected
in the semiclassical analysis and eliminated from the exact
quantum computations. Another example of tunneling pro-
cess with nonmonotonic dependence of the suppression ex-
ponent on energy is considered in Ref. �35�.

Let us mention some open issues.
The method of complex trajectories is known to suffer, in

general, from difficulties related to the Stokes phenomenon
�12,13�. The essence of this phenomenon is that solutions of
the tunneling problem may be unphysical in some regions of
the parameter space; the contributions of such solutions to
the tunneling probability should be dropped. Presently, there
are no generic criteria for distinguishing between physical

and unphysical solutions. One notes that the method we put
forward in this paper trivially excludes some of the unphysi-
cal solutions. Indeed, we start from the classically allowed
region of initial data �large N� where the physical solutions
are precisely the real-valued classical trajectories. At the sec-
ond step we relate these solutions to complex tunneling tra-
jectories; thus, we exclude the branches of unphysical solu-
tions that are complex valued deep inside the classically
allowed region of initial data. Due to this “automatic” crite-
rion, we did not see any manifestations of the Stokes phe-
nomenon in the semiclassical calculations presented above.
We remark, however, that the tunneling process we studied is
the simplest one from the point of view of the Stokes phe-
nomenon; the above “automatic”exclusion of unphysical so-
lutions is insufficient in somewhat more involved situations.
Two aspects of our model simplify the analysis. First, we
observed that the tunneling solutions obtained from the real
classical trajectories of a given topology � form a single
smooth branch which covers the entire range of initial data.
Second, we showed that the hierarchy of the suppression
exponents F� is the same at different values of E ,N. These
two observations allowed us to identify a single smooth
branch of physical solutions which give the dominant contri-
bution to the tunneling probability. In other models �see, e.g.,
Ref. �35�� the solutions obtained by small deformations from
different parts of the classically allowed region of initial data
may correspond to different smooth branches of complex tra-
jectories. Each of these branches may be physical and domi-
nant in some region of the initial data plane, and unphysical
or subdominant in other regions. If this is the case, some
method of treating the Stokes phenomenon �14–16� should
be exploited.

The approach adopted in this paper was to perform the
evaluation of the tunneling probability as the systematic
semiclassical expansion in terms of g2. We have calculated
the leading term �suppression exponent�. It is of interest to
develop a method for calculating the subleading terms, in
particular, the preexponential factor A �see Eq. �1��. Presum-
ably, this can be done along the lines of Ref. �34�. An im-
portant problem that should be solved here is how to cope
with the infinite number of tunneling paths, whose suppres-
sions can be arbitrarily close to the limiting value. In particu-
lar, one has to understand whether the contributions of all the
paths should be summed up or the correct value of the pref-
actor is determined by a sort of limiting procedure similar to
the one we used to obtain the suppression exponent.

Another question is the following one. While solving the
Schrödinger equation we observed that at finite g2 the depen-
dence of the exact tunneling probability on energy is modu-
lated by oscillations. We conjectured that they result from the
quantum interference of different tunneling trajectories. In
the true semiclassical limit g2→0 the above oscillations be-
come infinitely frequent and should be averaged over. In real
physical situations one deals, however, with small but finite
values of the semiclassical parameter g2. Thus it would be
interesting to reproduce the interference pattern mentioned
above in the semiclassical approach. As suggested by Refs.
�14,20,22� this could be done by summing up the contribu-
tions of various tunneling trajectories at finite g2. We leave
this investigation for future work.

LEVKOV, PANIN, AND SIBIRYAKOV PHYSICAL REVIEW E 76, 046209 �2007�

046209-16



ACKNOWLEDGMENTS

We are indebted to F. L. Bezrukov and V. A. Rubakov for
useful discussions and helpful suggestions. This work was
supported in part by the RFBR Grant No. 05-02-17363,
Grants from the President of the Russian Federation No. NS-
7293.2006.2 �Government Contract No. 02.445.11.7370�,
No. MK-2563.2006.2 �D.L.�, and No. MK-2205.2005.2
�S.S.�, Grants from the Russian Science Support Foundation
�D.L. and S.S.� and the “Dynasty” Foundation �A.P.�, and
INTAS Grant No. YS 03-55-2362 �D.L.�. D.L. is grateful to
the Universite Libre de Bruxelles and to EPFL, Lausanne,
for hospitality during his visits. The numerical calculations
were performed on the Computational cluster of the Theoret-
ical division of INR RAS.

APPENDIX A: A METHOD TO OBTAIN
THE UNSTABLE SOLUTIONS

In this appendix we describe the numerical method used
to obtain the limiting tunneling trajectories considered in
Sec. IV, namely, the ones ending up at the far sphaleron at
late times. The main problem here is the instability of the
trajectories in question.

Our main idea is to add the following term to the action
functional:

S�x� � S�x� + iM�x�tf� − xf
0�2, �A1�

where x�tf� stands for the final value of the coordinate x,
while M �0, xf

0 are real parameters. For a given trajectory
the term �A1� leads to an additional contribution to the sup-
pression exponent,

�F = 2M�x�tf� − xf
0�2. �A2�

The introduction of the above term induces the following
modification of the boundary conditions �21c�:

Im x�tf� = 0, �A3a�

Im ẋ�tf� = − 2M�x�tf� − xf
0� . �A3b�

This can be shown using the systematic approach of Refs.
�30,34,35�. At large positive M, the term �A2� fixes the value
of the final x coordinate of the solutions to be close to xf

0. For
our purposes we choose xf

0 to be in the vicinity of the far
sphaleron, xf

0=−1. Solutions that approach the far sphaleron
at late times are obtained in the following way. One finds a
solution to the original equations of motion which spends
finite time on the far sphaleron, and cuts it at the moment t
= tf when it is still at x�−1. Using this trajectory as the
zeroth-order approximation, one applies the Newton-
Raphson algorithm and obtains the solution satisfying the
boundary conditions �A3a�. The latter solution is defined in-
side the interval t� �ti , tf�. The next step is to continue the
solution to a larger time interval by gradually increasing the
value of tf and deforming the tunneling solution. As a result,
one obtains the solution staying at the far sphaleron for an
arbitrarily long time.

The solution obtained in this way does not, strictly speak-
ing, satisfy the boundary conditions �21c� of the tunneling

problem. In order to restore the original boundary conditions
�21c� one should, in principle, investigate the dependence
xf�xf

0� and find the value of xf
0 that solves the equations

xf�xf
0�=xf

0. However, it is not necessary in our case: at late
times the limiting solution is almost real, so one obtains
Im ẋf �0 automatically.

APPENDIX B: NUMERICAL SOLUTION OF THE
SCHRÖDINGER EQUATION

Here we present the numerical formulation of the problem
�36�, �39�, and �40�. First of all, the range of the translatory
coordinate should be bounded, −LXL, as well as the
oscillator excitation number, n�Ny. In addition, we intro-
duce the uniform lattice with spacing �,

Xk = − L + �k + 1��, k = − 1, . . . ,Nx + 1,

where Nx=−2+2L /�. The Taylor series expansion gives

1

�2 ��k+1 − 2�k + �k−1� = �k� +
�2

12
�k

�IV� + O��4� . �B1�

By �k� and �k
�IV� we denote the second and fourth derivatives

of � at X=Xk. Note that the index n is suppressed: hereafter
we use the matrix notations. From Eq. �36� �k�=Ak�k; for the
fourth derivative one writes

�k
�IV� =

1

�2 ��k+1� − 2�k� + �k−1� � + O��2�

=
1

�2 �Ak+1�k+1 − 2Ak�k + Ak−1�k−1� + O��2� .

Substituting the above expressions into Eq. �B1�, one gets
the fourth-order Numerov-Cowling approximation for Eq.
�36�,

�1 −
�2

12
Ak+1��k+1 − �2 +

5�2

6
Ak��k + �1 −

�2

12
Ak−1��k−1

= 0, k = 0, . . . ,Nx. �B2�

It is worth noting that Eq. �B2� supports the discrete prob-
ability current, which is conserved exactly,

J�d� =
1

�
Im �k

+�1 −
�2

12
Ak��1 −

�2

12
Ak+1��k+1. �B3�

This conservation law was used to estimate the round-off
errors.

The boundary conditions �39� and �40� are imposed at the
very last and first sites, k=Nx+1 and −1, respectively. One
notes that the asymptotic formula �37� holds in the discrete
case as well, provided the continuum dispersion relation �38�
is replaced by the discrete one18

Pn → Pn
�d� =

2

�
arcsin

Pn�

2�1 + Pn
2�2/12

.

Consequently, one rewrites Eqs. �39� and �40� as

18For n�E−1/2 one has Pn
�d�

= �2i /�� arcsh�	Pn 	� /2�1− 	Pn	2�2 /12�.
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�n,Nx+1 − eiPn
�d�

��n,Nx
= 
n,Ne−iPn

�d�L�1 − e2iPn
�d�

�� ,

�n,0 − e−iPn
�d�

��n,−1 = 0. �B4�

These relations together with Eq. �B2� form a system of
Ny�Nx+3� linear equations for the same number of unknowns
�n,k. After solving them, one calculates the reflection prob-
ability by making use of the discrete current,

P =
	J�d,out�	
	J�d,in�	

,

where J�d,in� and J�d,out� are the incoming and outgoing cur-
rents at k=Nx+1,

J�d,out� =
1

�
�

n�E−1/2

sin�Pn
�d���	rn

+	2

�1 −
1

3
sin2 Pn

�d��

2
�2 ,

J�d,in� = −
1

�

sin�PN
�d���

�1 −
1

3
sin2 PN

�d��

2
�2 ,

while the reflection amplitudes rn
+ are extracted from the

wave function,

rn
+ =

�n,Nx+1 − e−iPn
�d�

��n,Nx

1 − e−2iPn
�d�

�
e−iPn

�d�L.

We will see shortly that the finite difference approxima-
tion works well only if the numbers of the lattice points and
oscillator levels are large. Typically, Nx�10 000, Ny �500,
and the system �B4� and �B2� contains Ny�Nx+3��5�106

equations. Such an enormous system of equations cannot be
solved with the general algorithms of linear algebra. So we
took advantage of the special form of Eqs. �B2�, namely, the
kth matrix equation relates the vector �k to the unknowns at
the adjacent sites �k−1 and �k+1 only; by performing numeri-
cally the matrix inversion it can be recast in the form

�k = Lk�k−1 + Rk�k+1,

where Lk and Rk are the Ny �Ny matrices. One substitutes the
above formula into the other equations of the system �B2�,
thus excluding �k, as well as the kth matrix equation. Per-
forming this operation repeatedly, one ends up with a few
matrix equations, which can be solved in a straightforward
manner by the LU decomposition method. It is worth point-
ing out that the variables �k and �q, which are not neighbors
to each other, can be excluded in parallel, so that the above
algorithm is suitable for multiprocessor machines or compu-
tational clusters. The reader interested in the details of the
algorithm should address Refs. �33,38�, or our FORTRAN 90

code �39�, which hopefully can be executed on other ma-
chines.

Before proceeding to the actual calculations, one makes
sure that the parameters of the lattice are chosen properly, so
that the truncation and discretization errors are kept under
control. Our purpose is to get the quantum mechanical re-
sults in the semiclassical region g2→0. Therefore, it is con-
venient to account explicitly for the dependence of the lattice
parameters on g. The truncation L of the translatory coordi-
nate is fixed by the condition that the interaction represented
by the function ã�X� is small enough at X=L. Taking into
account the scaling �35� of ã�X� with g, one obtains the
formula

L = L̃/g ,

where L̃ is fixed and large. In the practical calculations we
used the value L̃=12, which is large enough as a�L̃�
�10−31: at g�0.07 this number is smaller than the absolute
values of the reflection amplitudes, the latter exceeding 10−8.
We have chosen the truncation of the oscillator levels in
accordance with the condition that the occupation number of
the last mode is negligible,

�
k

	�Ny−1,k	 � 10−30;

this inequality was satisfied with Ny typically ranging be-
tween 200 and 500. The last parameter, the lattice spacing �,
should be several times smaller than the minimal de Broglie
wavelength; we have found that the formula

� = 0.3 min
n

1

	Pn	

works well enough, producing relative errors of order 10−4.
The fact that the discretization corresponds to the relative

rather than absolute errors can be understood as follows.
Equations �B2� and �B4� may be regarded as the ones de-
scribing reflection of a quantum particle in a kind of crystal.
Indeed, the substitution �k= �1− ��2 /12�Ak��k brings Eq.
�B2� into the form H�d��=0, where � is the column com-
posed of �k, and H�d� is a Hermitian linear operator. The
probability of reflection in a crystal is exponentially small for
the same dynamical reasons as in the continuum case. One
concludes that the finite value of � gives rise to corrections
to the suppression exponent, rather than to the reflection
probability itself, i.e., it produces relative discretization er-
rors. We have checked the above physical considerations by
performing calculations on lattices with different cutoffs and
lattice spacings. The overall conclusion is that, indeed, the
discretization effects result in relative errors of order 10−4,
while the truncation errors are always negligible. We kept the
round-off errors under control by exploiting the current con-
servation law �B3�, which was checked to hold with preci-
sion better than 10−12.
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